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Nonstationary evaporation and diffusion of vapor is considered in conjunction with the associated heat con-
duction processes. An exact solution of the problem for a plane evaporation surface is obtained with allow-
ance for temperature and concentration discontinuities.

The successful solution of 2 number of practical problems requires a combined theoretical treatment of the diffu-
sion and thermal processes associated with the evaporation of & liquid in a gaseous medium. It is usually assumed that
all these processes are quasi-stationary, and their relaxation is considered separately [1, 2]. This assumption often leads
to gross errors: for instance, the relationships characterizing evaporation turn out to be independent of the thermophysi-
cal characteristics of the liquid, a situation which is unacceptable from the physical viewpoint. An attempt to consider
the problem in general form for a drop was made in [3, 4]. Using the Duhamel transformation, the authors managed to
reduce the problem of determining the temperature at the surface of the drop to the solution of a nonlinear integral e-
quation. In [3, 4] this equation was linearized and an approximate solution was obtained for the particular case of small
undersaturations.

The main difficulty is due to the complex relationship between the parameters of the problem and the tempera-
ture. Yet in many technical applications most of these parameters can be regarded as constant over a fairly wide tem-
perature range. This assumption was made, in particular, in [3, 4] and is justified if the liquid is not volatile in the
temperature range in question,

In this paper attention is concentrated on fundamentals and, hence, it is sufficient to examine only the very sim-
ple case of evaporation from a plane surface, a case which is, of course, of independent interest. The extension of the
results to more complex cases will be considered later,

We will consider the one-dimensional problem, assuming for simplicity that the liquid is infinitely deep and no
restrictions are imposed on the upward diffusion of its vapor. The vapor concentration q(t, x) and the temperatures of
the liquid Uy, x) & =0)and vapor-gas medium Uz(t, x) (x > 0) satisfy the equations
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We write the initial conditions in the form
Go,x) = 4w, Up(0,x) = Ty, Uz(0,x) == To. (3)

It is usual to assume continuity of temperature and equality of q, x) and the saturated vapor concentration g ©
at the evaporation surface. This obviously leaves out of account the surface layer in which uy(;, x) and q(t, x) undergo
an abrupt change not predicted by Egs. (1) [1, 5, 6]. The existence of this layer is due to the face that in the immedi-
ate vicinity of the liquid surface heat and mass transfer occur by molecular-kinetic mechanisms, lying outside the range
of the macroprocesses for which Eqs. (1), averaged over a large number of particles, are valid. The presence of such a
layer is of particular significance during the initial instants, when, roughly speaking, the escape of vapor molecules in-
to the gaseous phase is similar to evaporation into a vacuum, and the diffusion processes proper play a secondary role.
Hence, it is obvious a priori that the relationshipsobtained on the basis of the above conditions can be valid, at best,
only for the steady phase and are unsuitable for the investigation of the unsteady state, particularly for the investigation
of relaxation,

The rate of evaporation into a vacuum from unit surface of a liquid can be expressed in the form vods ey, and the
rate of back condensation in the form vaqe, a)[1). Equating the difference of these values to the diffusion flow of
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vapor and neglecting the thickness A of the layer, for q, x) We obtain

D 0
(1<rf0)—“-*—*—cl

= . 4
e Ox st @

x=0

In exactly the same way, taking into account the temperature discontinuity, we have
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Furthermore, to the system of boundary conditions we add the condition of heat balance at a free surface
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The quantity dg@p) in (4) is a function of the temperature Ty at the evaporation surface. The theoretical form of
this function is determined from the Clapeyron-Clausius equation, although for practical applications numerous semiem-
pirical formulas for g4 have been proposed. These still continue to appear [7, 8] and sometimes differ significantly from
the theoretical formulas. For the sake of generality, we propose to represent dg in the form of a Taylor expansion correct
to the first power of the difference Ty — To,

Gsty = Qo + P [Tsity — Tol, N

where q, represents the saturated vapor concentration at temperature T,. For the majority of important practical prob-
lems this is quite adequate. The method of calculation for cases where the error of Eq. (7) is high will be considered be-
low.

Applying the Laplace transformation to Eqs. (1) and solving the transformed equations for the above conditions,
after simple calculations we obtain for the transforms of the required functions
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‘We calculate the originals of expressions (8). For definiteness we assume that the equation p2 + 2bp + ¢ = 0 has only
real negative roots 0, and g,. The treatment in other cases does not differ fundamentally from that given below. More-
over, using (9), it is easy to show that other cases are hardly ever realized. Reducing the denominators of (8) to their sim-
plest factors and going over to the originals, we finally obtain
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For the temperature at the evaporation surface we have
1 _
Ty =To+ ky+ (ka4 kg + ky) Vﬂ:t + o1 kg exp (sft)eric(— o VE) +
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It is easy to see that when the temperature and concentration discontinuities are neglected (o, § > «) the expres-
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sions for the unknowns have the form
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A comparison of formulas (10)-(14) and (15) shows that a consideration of these discontinuities is absolutely essen-

tial in the analysis of relaxation processes and nonstationary evaporation in general. Otherwise many important features
of the effects investigated are completely disregarded, because the simplified expressions (15), corresponding to the first
boundary problem, describe only some asymptotic stage of the relaxation processes, where, for instance, the tempera-
ture at the free surface can be regarded as constant, But even in this last case (15) give only approximate representations
of the required fields, since the values D/vo and A\p/v8cly, usually regarded as small, have a very powerful effect on the
form of the basic solutions (10)-(12). Hence, any solution of this and similar problems that ignores these features of the
temperature and concentration fields close to the evaporation surface (particularly the results of [3, 4]) should be used
with great care.

When t = « for any finite x the temperatures of the liquid and vapor-gas medium tend to the same constant value
Ty +ky, i.e., the asymptotic value Ts(t) has the sense of some equilibrium temperature of the liquid-gas system, where
the entropy of this system is a maximum, The relaxation time for the establishment of a constant free-surface tempera-
ture is given by the expression N
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The thermal processes in the liquid and the vapor-gas medium, and the diffusion process at a distance x from the
surface, will be close to quasi-stationary, respectively, when
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For instants satisfying relation (17) it is easy to obtain asymptotic representations of all the unknowns by automa-
tically using this expression for the Kramp function erfc z. To save space these have not been written out.

As already pointed out, for volatile liquids (and also for greatly differing temperatures T, and T ) the error of re~
lation (7) may be considerable. Hence, for several applications the method of increasing the accuracy of the theoreti-
cal results is indicated.

Expression (7) and all the subsequent formulas based on its use can be regarded as the zero-order approximation.
We will assume that this approximation gives a value Ts(t) for the temperature at the liquid surface. It is natural torcon-
struct the next approximation on the basis of a new expansion of type (7

ath = qih -+ BT, — T, (18)

As dlstmct from the coefficient 8(), referred to the vicinity of point T, 8Wisa parameter of the expansion at
another point 7Y stf). Expansion (18), and also all the succeeding ex ansions of the second, third, etc. approximations,
have to be determined separately for each instant and, hence, 8% B(z), ... are functions of time, For most liquids,
however, the change of Ty with time is so slow that 84 can be regarded as an adiabatic invariant of the problem,
and this greatly simplifies the calculations.

For quasi-stationary conditions, where, according to (15), the temperature at the evaporation surface can be re-
garded as constant, there is another "finite” method calculation, in addition to that given. Actually, an approximate
expression (7) has to be found to correspond with the real relation qg = f(Tg)

Qo -+ 6 (Ts - TO) = f (Ts) (19)

This equation gives the value of 8 at which T, also a function of 8, represents the exact temperature at the eva-
poration surface. It is easy to solve Eq. (19) numerically or graphically.

As an illustration, we will consider the evaporation of an almost involatile liquid and volatile benzene. For sim-
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plicity, we will assume that the diffusion and heat-transfer constants in the vapor-gas medium are equivalent to the cor-
responding constants in pure air and take Ty = 30°C, T = 0°C, q, = 0. The characteristics of air, water, and benzene
required for the calculations are tabulated in [9].

Table

Pararneters of Air, Water, and Benzene at a Pressure of 10 - 10* N /m?
and Temperature 20-30°C

Parameter Afr Water Benzene
A W/m - deg 25.6-10—3 6.3.10— 15.5.10—2
¢, I/kg - deg 1.108 4.2.108 0,7.108
p, kg/m® 1,2 1.0-108 0.88. 108
L, ki/kg - 2268 4326
a?, m?/sec 0.212.10—4 1.45.10~7 3.21.10~%
Ma, W - sect2/m? . deg| 55684.44- 10— 159098,4. 102 48148.2.10~2
D, m?: sec”? — 0.982.10—4 0.087.10—

The relationship between the concentration of saturated water vapor and temperature can be expressed by the for-
mula [10]
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where qq is the concentration of the saturated vapor, equal to 3.18 X 1075 g/cm3 at T, = 30°C, Thus, () =9. 1078 g/
Jem® -+ deg.

The reduction of temperature at the evaporation surface is, as is to be expected, extremely slight: calculation
from Eq. (14) gives Ty — T¢= 0.36°C. Sixty-four percent of this reduction is due to heat absorption associated with evap-
oration and the other 36% to inequality of the initial temperatures of the liquid and gaseous phases. In this case the er-
ror of (7) is extremely small and the resultant error in determining T, the rate of evaporation, etc., is correspondingly
small, so that it is usually unnecessary to use methods for improving the accuracy.

The situation Is different in the case of the evaporation of benzene. The relationship between the saturated vapor
pressure of benzene and the temperature is satisfactorily represented by the Antoine equation [5]
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Taking the molecular weight of benzene as 78,108 and assuming that benzene vapor is a perfect gas, we obtain
for qs(o) the expansion
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where qp = 4,83 + 107 g/cms; hence, 8©) =216 - 10-3 g/cm3 » deg. We calculate the change in free-surface tempera-
ture: AT() = TS(O) ~ Ty = ~19°C, the overwhelming part of this reduction (399.7%) being due to absorption of heat dur-
ing evaporation. We now consider the next (first approximation. Instead of q we take a value gy’ equal to 2.1 . 1072
g/cm®, as can easily be calculated from the Antoine equation (21). Accordingly, 8 1= 1,09 - 1073, Then we easily ob-
tain( )AT<1) = —14. 2°C. We construct the second approximation: q,(*) = 2.59 - 1072 g/em®, 8® = 1.29 - 107, and, finally,
ATY® = ~15, 5°C.

In a similar way we can easily construct all the subsequent approximations, The essential feature is that the val-
ues Tgi) =Ty +ATD give a more and more accurate value of the temperature of the liquid surface, approaching it al-
ternately from above and below with increase in i, (It is easy to demonstrate this for the general case by using the mono-
tonicity of function p from (21) and its first derivative). The actual value thus lies in the "fork" formed by each pair of
numbers Ts(i) and Ts”'1 » and the size of this "fork" decreases with increase in i, thus reducing the possible error of the
calculation. For instance, in our case we can state that the true temperature at the surface of the evaporating benzene
lies between 14.5 and 15.8°C. Hence, the error in determining this temperature does not exceed = 1.3°C. To attain
greater accuracy we must continue the calculation by working out AT®), AT G ), and so on.
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All that has been said regarding the calculation of the temperature Tg can be extended with hardly any change to
the calculation of the evaporation rate and other quantities characterizing heat and mass transfer.

NOTATION

D - coefficient of molecular diffusion of vapor in vapor-gas medium; a% and a% — thermal diffusivities in liquid
and vapor-gas medium, respectively; A; and A, — thermal conductivities in liquid and vapor-gas medium; L — specific
heat of vaporization of liquid; Ty T 9o — limiting values of temperature and vapor concentration at infinity; Tg —
temperature of evaporation surface; qg — density of saturated vapor; v — fourth part of mean absolute velocity of vapor
molecules; o — evaporation coefficient; § — accomodation coefficient; A ~ thickness of layer of concentration and tem-

perature discontinuity at evaporation surface.
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