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Nonstationary evaporation and diffusion of vapor is considered in conjunction with the associated heat con- 
duction processes. An exact solution of the problem for a plane evaporation surface is obtained with allow- 
ance for temperature and concentration discontinuities, 

The successful solution of  a number of  practical problems requires a combined theoretical treatment of  the diffu- 
sion and thermal processes associated with the evaporation of a liquid in a gaseous medium. It is usually assumed that 
all these processes are quasi-stationary, and their relaxation is considered separately [1, 2]. This assumption often leads 
to gross errors: for instance, the relationships characterizing evaporation turn out to be independent of  the thermophysi- 
cal characteristics of the liquid, a situation which is unacceptable from the physical viewpoint. An attempt to consider 
the problem in general form for a drop was made in [3, 4]. Using the Duhamel transformation, the authors managed to 
reduce the problem of determining the temperature at the surface of the drop to the solution of  a nonlinear integral e- 
quation. In [3, 4] this equation was linearized and an approximate solution was obtained for the particular case of small 
undersaturations. 

The main difficulty is due to the complex relationship between the parameters of  the problem and the tempera-  
ture. Yet in many technical applications most of these parameters can be regarded as constant over a fairly wide tem-  
perature range. This assumption was made, in particular, in [3, 4] and is justified if the liquid is not volatile in the 
temperature range in question. 

In this paper attention is concentrated on fundamentals and, hence, it is sufficient to examine only the very sim- 
ple case of evaporation from a plane surface, a case which is, of course, of independent interest. The extension of  the 
results to more complex cases will be considered later. 

We will consider the one-dimensional problem, assuming for simplicity that the liquid is infinitely deep and no 
restrictions are imposed on the upward diffusion of  its vapor. The vapor concentration q(t, x) and the temperatures of  
the liquid ul(t, x) (x -< 0) and vapor-gas medium uz(t, x) (x > 0) satisfy the equations 

Oq = D 02q 
Ot Ox 2' 

In accordance with our assumptions, we take 

lira ul - -  To, 

We write the initial conditions in the form 

Out - -  a? 02u~ ( i = l  2). (1) 
Ot ' Ox 2 

! im u~ ----- Too, l i m q  = q~. (2) 
X ~  oO X ~ o O  

q(o,x~ =- qoo, Ul (o,x} = To,  U2(o,x) = T=o. (3) 

It is usual to assume continuity of  temperature and equality of q(t, x) and the saturated vapor concentration qs(t) 
at the evaporation surface. This obviously leaves out of  account the surface layer in which u~.(t, x) and q(t, x) undergo 
an abrupt change not predicted by Eqs. (1) [1, 5, 6]. The existence of this layer is due to the face that in the immedi-  
ate vicinity of the liquid Surface heat and mass transfer occur by molecular-kinet ic  mechanisms, lying outside the range 
of the macroprocesses for which Eqs. (1), averaged over a large number of particles, are valid. The presence of  such a 
layer is of particular significance during the initial instants, when, roughly speaking, the escape of  vapor molecules in- 
to the gaseous phase is similar to evaporation into a vacuum, and the diffusion processes proper play a secondary role. 
Hence, it is obvious a priori that the relationships obtained on the basis of the above conditions can be valid, at best, 
only for the steady phase and are unsuitable for the investigation of the unsteady state, particularly for the investigation 
of  relaxation. 

The rate of evaporation into a vacuum from unit surface of a liquid can be expressed in the form vaqs(t ), and the 

rate of back condensation in the form yaq(t ' A) [I]. Equating the difference of these values to the diffusion flow of 
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vapor and neglecting the thickness A of the layer, for q(t, x) we obtain 

D Oq ~=o q(t,o) = qs(t). (4) 
v~ Ox 

In exactly the same way, taking into account the temperature discontinuity, we have 

k2 0l/2 x=O 
u2(i,o) v~ Ox = ut(t,o). (5) 

Furthermore, to the system of boundary conditions we add the condition of  heat balance at a free surface 

& l  __ I L D  Oq Xl 
Ox ~=o Ox ]~=o Ox I~=o 

(6) 

The quantity qs(t) in (4) is a function of the temperature Ts(t) at the evaporation surface. The theoretical form of 
this function is determined from the Clapeyron-Clausius equation, although for practical applications numerous semiem- 
pirical formulas for qs have been proposed. These still continue to appear [7, 8] and sometimes differ significantly from 
the theoretical formulas. For the sake of  generality, we propose to represent qs in the form of a Taylor expansion correct 
to the first power of  the difference Ts(t) - T 0, 

q,(t) --~" qo + [3 [T~(t) - To], (7) 

where q0 represents the saturated vapor concentration at temperature T 0. For the majority of important practical prob- 
lems this is quite adequate. The method of  calculation for cases where the error of  Eq. (7) is high will be considered be-  

low. 

Applying the Laplace transformation to Eqs. (1) and solving the transformed equations for the above conditions, 
after simple calculations we obtain for the transforms of the required functions 

= 
dV-fi+e "- (To-- T .  

p (p + 20 I ; p +  c)' =, p 

-~=(qo--qoo ~_~u--x)(l+ 
P 

_)( _)_1 
+ ul 1 + v~a2 V-p , 

VY)-', 
(8) 

where 

b = ala2va~ [ kl)'2 _ _  ] / - D  ( X l ) , 2 )  ~LVDk~ ] 
2 V-D)~lk2 ~ ala2 + + 4 , a ax a2 ~ a2 

d = 

e 

C ~  ala2va~ IX1 + ~.2 + ~ L ] / D ] ,  I/D x~x~ al a~ 

),~ (qo- -q ,o )+  ~ ( T o -  T~) , 

VDXl)~ 2 G 2 

(9) 

We calculate the originals of  expressions (8). For definiteness we assume that the equation p2 + 2bp + c = 0 has only 
real negative roots 01 and o s. The treatment in other cases does not differ fundamentally from that given below. More- 
over, using (9), it is easy to show that other cases are hardly ever realized. Reducing the denominators of (8) to their sim- 
plest factors and going over to the originals, we finally obtain 

x )  1 
2alVT- + k ~ - ~ e x p  

4a~t +~lexp ~ t - - ~ l  

x2) 
4a~t + 

al 

/ 
= To + kl erfc ( 121(t,x) 

% 

1 
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( x {1 (x2 
)( eric 2al V F  ~ I/-t- + k~ ~ exp 4a~t 

( x) ( x 
a~ 2a~ V t " 

(10) 

+ 

( x I+ u2lt,x) = T= + (To --  Too + kl) erfc 2a~ ] / t  / 

[ ~ a~ (k2 k~ k~ ) 

x ~a~ ) '4 X X eric( - ~ -  * VT k3 ~ 
\2a~ V t  ~ 1 + ~,~/~; a~ 

Xexp (-- a~ *~ x + . ~ t ) e r f c (  2a2i/-[-x all/ t-)  -q- 

-- x + .~ t eric "2 V-t 
1 + ?,2z2/,~; a2 a2 2a21/-( ' 

(11) 

( x )  q ( t , x ) = % + ( q o - - q |  21/'D-7 + 

+ k2 + 1 + D ol/va + 1 + D ~2/va " - -  

- - (q0- -q .+~k~)  exp ~ 4 -  D-- T t  erfc 2 I / b t  +--D-1/7 + 

~ksh exp( - -~ lx+  ~t )  erfc 2I/D7 + I+D*I / '~  

[3k,~ ~2x + ~22t) erfc ( x - - ~ 2 i / t - )  �9 l+D*2 /~  exp(--  2 l /Dt  
+ 

d 
c 

e 2eb d 2eb e 
k l -  - - ,  [7,3- - -  4- 

c c 2 c c ~ ~2 (~z - -  ~2) 

d 2eb e 
k4- -  - -  + - -  

c ca ~ (~,~ - ~,~) 

(12 )  

For t h e  t e m p e r a t u r e  a t  t h e  e v a p o r a t i o n  s u r f a c e  w e  h a v e  

1 T . )  = To + kl + (k2 + k3 + k4) - ~  + ~1k3 exp (~t) erfc ( -- ~1 l/-t -) + 

+ ~2 k4 exp (~ t)erfc ( --  ~ I/F), 
(is) 

1 1 1 
or  w h e n  t )) ~ ,t)) - - -  ~ , c o r r e c t  t o  - -  : 

Ts(t) ~--- To + kx + k ~  ~ To + kl. (14t 

It  is e a s y  to s e e  t h a t  w h e n  t h e  t e m p e r a t u r e  and  c o n c e n t r a t i o n  d i s c o n t i n u i t i e s  a r e  n e g l e c t e d  (a ,  6 --~ ~)  t h e  e x p r e s -  
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sions for the unknowns have the form 

ul(g,~) = To -k kx eric x 
2ai ]/-~- ' (x )  

u2u,~) = To, + (To - -  Too + k0 eric 2a~ ] / T  ' 

q=q~+(qo- -q=- l -~k~)er fc  2]/-D-{ ' T'(~ =T~ 

(i5) 

A comparison of formulas (10)-(14) and (15) shows that a consideration of these discontinuities is absolutely essen- 
tim in the analysis of relaxation processes and nonstationary evaporation in general. Otherwise many important features 
of the effects investigated are completely disregarded, because the simplified expressions (15), corresponding to the first 
boundary problem, describe only some asymptotic stage of the relaxation processes, where, for instance, the tempera- 
ture at the free surface can be regarded as constant. But even in this last case (15) give only approximate representations 
of the required fields, since the values D/ua and k2/u6a e, usually regarded as small, have a very powerful effect on the 
form of the basic solutions (10)-(12). Hence, any solution of this and similar pmb!ems that ignores these features of the 
temperature and concentration fields close to the evaporation surface (particularly the results of [3, 4]) shouid be used 
with great care. 

When t ~ oo for any finite x the temperatures of the liquid and vapor-gas medium tend to the same constant value 
T o + k l, i . e . ,  the asymptotic value Ts(t) has the sense of some equilibrium temperature of the liquid-gas system, where 
the entropy of this system is a maximum. The relaxation t ime for the establishment of a constant free-surface tempera- 
ture is given by the expression 

1 [  k , / 2  

The thermal processes in the liquid and the vapor-gas medium, and the diffusion process at a distance x from the 
surface, will be close to quasi-stationary, respectively, when 

x ~ X 2 X 2 
t >> ti ~ 2 , t >> t2 . ~  t >> t 3 (17) 

a, ' ~ a 2 ' ~ D 

For instants satisfying relation (17) it is easy to obtain asymptotic representations of all the unknowns by automa- 
tically using this expression for the Kramp function eric z. To save space these have not been written out. 

As already pointed out, for volatile liquids (and also for greatly differing temperatures Too and To) the error of re- 
lation (7) may be considerable. Hence, for several applications the method of increasing the accuracy of the theoreti- 
cal results is indicated. 

Expression (7) and all the subsequent formulas based on its use can be regarded as the zero-order approximation. 
,re(o) We will assume that this approximation gives a value --s(t) for the temperature at the liquid surface. It is natural to~ con- 

struct the next approximation on the basis of a new expansion of type (7): 

q(~) _(o) ~(0 [ T i n  T (~ ' (18)  s(t) = q s ( t ) - ~  t ~ ~ - s ( t ) ~  s(t) j .  

As distinct from the coefficient 13(0), referred to the vicinity of point To, 13(1) is a parameter of the expansion at 
another point T ~ ) .  Expansion (18), and also all the succeeding expansions of the second, third, etc. approximations, 

(if (~) have to b e  determined separately for each instafft and, hence, ~ , 13 . . . .  are functions of time. For most liquids, 
however, the change of Ts(t) with t ime is so slow that $(i) can be regarded as an adiabatic invariant of the problem, 
and this greatly simplifies the calculations. 

For quasi-stationary conditions, where, according to (15), the temperature at the evaporation surface can be re- 
garded as constant, there is another "finite" method calculation, in addition to that given. Actually, an approximate 
expression (7) has to be found to correspond with the real relation qs = f ~ s ) :  

qo + ~ (Ts - -  To) = f (Ts). (19) 

This equation gives the value of 13 at which T s, also a function of 13, represents the exact temperature at the eva-  
poration surface. It is easy to solve Eq. (19) numerically or graphically. 

As an illustration, we will consider the evaporation of an almost involatile liquid and volatile benzene. For sire- 
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pl ic i ty ,  we will  assume that the diffusion and heat- t ransfer  constants in the vapor-gas medium are equivalent  to the cor- 
responding constants in pure air  and take T O = 30~ T~  = O~ qo~ = 0. The characterist ics of  air,  water,  and benzene 
required for the calculat ions are tabulated in [9]. 

Table  

Parameters of Air, Water, and Benzene at a Pressure of  10 �9 104 N/m 2 
and Temperature  20- 30~ 

Parameter  Ak  Water Benzene 

X, W/m . deg 25.6.10 -3 

c, J /kg �9 deg 1.103 

p, k g / m  8 [ 1,2 

L, k;/kg / 
a z, m~/sec 0.212.10-~ 

k/a, W " sec l /2 /m 2 �9 deg 55684.44.10-4 
D, m 2.  see -I 

6.3.10 - I  
4.2.103 

1,0.108 
2268 

1.45.10 -7 

159098,4.10-a 

O. 282. I0 -4 

15.5.10-" 

0.7, 108 

0.88.103 

4326 

3.21.10 -~ 

48148.2.10 -~ 

0. 087. I0 -4 

The relationship between the concentration of  saturated water vapor and temperature  can be expressed by the for- 
mula  [10] 

t7 (Ts - To) ] 17qo (Ts - -  To), (20) 
q s = q o e x p  2 3 5 + T s  - ~ q o §  2 3 5 + T o  

where q0 is the concentrat ion of the saturated vapor, equal to 8.13 • 10 -5 g / c m  s at T O = 30~ Thus, B(~ = 2 ' 1 0  - 6  g /  
/ c m  3 �9 deg. 

The reduction of tempera ture  at  the evaporation surface is, as is to be expected,  ex t remely  slight: ca lcula t ion  

from Eq. (14) gives T s - T O = 0.36~ Sixty-four percent of  this reduction is due to hea t  absorption associated with evap- 

oration and the other 36% to inequal i ty  of the in i t ia l  temperatures of  the liquid and gaseous phases. In this case the er-  

ror of  (7) is ex t remely  smal l  and the resuItant error in determining T s, the rate of evaporation,  e t c . ,  is correspondingly 
small ,  so that  i t  is usually unnecessary to use methods for improving the accuracy.  

The situation is different in the case of  the evaporation of  benzene.  The relat ionship between the saturated vapor 

pressure of  benzene and the temperature  is sat isfactori ly represented by the Antoine equation [8] 

l g p =  6 . 8 9 7 -  1206.35 (21) 
�9 T + 220 .24  

Taking the molecular  weight of  benzene as 78,108 and assuming that  benzene vapor is a perfect  gas, we obtain 
for %(0) the expansion 

q~O) _~ qo + 2790qo (T~ - -  To), (22) 
(To + 220.24) z 

where qo = 4,83 ' 10 -z g/era3; hence,  ~5 (~ = 2.16 �9 10 -s g / c m  3 �9 deg. We ca lcu la te  the change in free-surface t empera -  

ture: AT(~ = T(~ - T O = -19~ the overwhelming part of  this reduction (99.7%) being due to absorption of  hea t  dur- 
ing evaporation.  We now consider the next (first approximation.  Instead of  q0 we take  a value  "*s~(~ equal  to 2.1 �9 10 -2 
g / c m  3, as can easi ly be ca lcu la ted  from the Antoine equation (21). Accordingly,  8 (1) = 1. 09 �9 10 -3. Then we easi ly ob-  
tain AT (1) = -14 .  2~ We construct the second approximation:  qs (1) = 2.59 �9 10 -2 g / c m  3, 8 (2) = 1.29 �9 10 -3, and, finally, 
AT (2) = -15.5~ 

In a s imilar  way we can easily construct a l l  the subsequent approximations.  The essential  feature is that the va l -  
ues T~ i) = To + &T (i) give a more and more accurate  value of  the tempera ture  of  the l iquid surface, approaching i t  a l -  
t ema te ly  from above and below with increase in i.  (it is easy to demonstrate this for the general  case by using the mono-  
tonic i ty  of funct ionD from (21) and its first derivat ive) .  The ac tua l  vaIue thus l ies in the "fork" formed by each pair of 

numbers Ts (i) and Ts ~+I),  and the size of this "fork" decreases with increase in i, thus reducing the possible error of  the 
calcula t ion.  For instance, in our case we can state that  the true tempera ture  at  the surface of  the evaporat ing benzene  

lies be tween  14.5 and 15.8~ Hence, the error in determining this temperature  does not exceed ~ 1.3~ To at ta in  

greater  accuracy we must continue the ca lcula t ion  by working out ZXT (3), AT (4), and so on. 
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All that has been said regarding the calculat ion of  the  temperature  T s can be extended with hardly any change to 
the ca lcula t ion  of  the evaporation rate and other quantities character iz ing heat  and mass transfer. 

NOTATION 

D -- coeff icient  of molecular  diffusion of vapor in vapor-gas medium; a t  and a~ - thermal  diffusivities in liquid 
and vapor-gas medium,  respectively;  kl  and ks - thermal  conductivit ies in l iquid and vapor-gas medium; L - specific 
heat  of  vaporizat ion of liquid; To, Too, q~ - l imi t ing  values of temperature  and vapor concentration at  infinity; T s - 
temperature  of evaporation surface; qs - density of  saturated vaporl u - fourth part of  mean absolute veloci ty  of  vapor 
molecules;  a - evaporation coefficient;  6 - accomodat ion coefficient;  A -- thickness of  layer of  concentration and t e m -  

perature discontinuity at  evaporation surface. 
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